59 research outputs found

    Best-Quality Vessel Identification Using Vessel Quality Measure in Multiple-Phase Coronary CT Angiography

    Get PDF
    The detection of stenotic plaques strongly depends on the quality of the coronary arterial tree imaged with coronary CT angiography (cCTA). However, it is time consuming for the radiologist to select the best-quality vessels from the multiple-phase cCTA for interpretation in clinical practice. We are developing an automated method for selection of the best-quality vessels from coronary arterial trees in multiple-phase cCTA to facilitate radiologist’s reading or computerized analysis. Our automated method consists of vessel segmentation, vessel registration, corresponding vessel branch matching, vessel quality measure (VQM) estimation, and automatic selection of best branches based on VQM. For every branch, the VQM was calculated as the average radial gradient. An observer preference study was conducted to visually compare the quality of the selected vessels. 167 corresponding branch pairs were evaluated by two radiologists. The agreement between the first radiologist and the automated selection was 76% with kappa of 0.49. The agreement between the second radiologist and the automated selection was also 76% with kappa of 0.45. The agreement between the two radiologists was 81% with kappa of 0.57. The observer preference study demonstrated the feasibility of the proposed automated method for the selection of the best-quality vessels from multiple cCTA phases

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field

    New Spectroscopic Technique Based on Coaddition of Surface Brightness Fluctuations: NGC 4449 and Its Stellar Tidal Stream

    No full text
    We present a new spectroscopic technique based in part on targeting the upward fluctuations of the surface brightness for studying the internal stellar kinematics and metallicities of low surface brightness galaxies and streams beyond the Local Group. The distance to these systems makes them unsuitable for targeting individual red giant branch (RGB) stars (tip of RGB at I24I\gtrsim24~mag) and their surface brightness is too low (μr25\mu_r\gtrsim 25~mag~arcsec2^{-2}) for integrated light spectroscopic measurements. This technique overcomes these two problems by targeting individual objects that are brighter than the tip of the RGB. We apply this technique to the star-forming dwarf galaxy NGC 4449 and its stellar stream. We use Keck/DEIMOS data to measure the line-of-sight radial velocity out to 7\sim7~kpc in the East side of the galaxy and 8\sim8~kpc along the stream. We find that the two systems are likely gravitationally bound to each other and have heliocentric radial velocities of 227.3±10.7227.3\pm10.7~km/s and 225.8±16.0225.8\pm16.0~km/s, respectively. Neither the stream nor the near half of the galaxy shows a significant velocity gradient. We estimate the stellar metallicity of the stream based on the equivalent width of its Calcium triplet lines and find [Fe/H]~=1.37±0.41=-1.37\pm0.41, which is consistent with the metallicity-luminosity relation for Local Group dwarf galaxies. Whether the stream's progenitor was moderately or severely stripped cannot be constrained with this metallicity uncertainty. We demonstrate that this new technique can be used to measure the kinematics and (possibly) the metallicity of the numerous faint satellites and stellar streams in the halos of nearby (4\sim 4~Mpc) galaxies.Comment: 10 pages, 8 figures, 2 tables. Accepted for publication in Ap

    Flood vulnerability of a few areas in the foothills of the Western Ghats: a comparison of AHP and F-AHP models

    No full text
    Flooding is one of the most destructive natural catastrophes that can strike anywhere in the world. With the recent, but frequent catastrophic flood events that occurred in the narrow stretch of land in southern India, sandwiched between the Western Ghats and the Arabian Sea, this study was initiated. The goal of this research is to identify flood-vulnerable zones in this area by making the local self governing bodies as the mapping unit. This study also assessed the predictive accuracy of analytical hierarchy process (AHP) and fuzzy-analytical hierarchy process (F-AHP) models. A total of 20 indicators (nine physical-environmental variables and 11 socio-economic variables) have been considered for the vulnerability modelling. Flood-vulnerability maps, created using remotely sensed satellite data and geographic information systems, was divided into five zones. AHP and F-AHP flood vulnerability models identified 12.29% and 11.81% of the area as very high-vulnerable zones, respectively. The receiver operating characteristic (ROC) curve is used to validate these flood vulnerability maps. The flood vulnerable maps, created using the AHP and F-AHP methods, were found to be outstanding based on the area under the ROC curve (AUC) values. This demonstrates the effectiveness of these two models. The results of AUC for the AHP and F-AHP models were 0.946 and 0.943, respectively, articulating that the AHP model is more efficient than its chosen counterpart in demarcating the flood vulnerable zones. Decision-makers and land-use planners will find the generated vulnerable zone maps useful, particularly in implementing flood mitigation plans

    Forest Fire Risk Zone Mapping of Eravikulam National Park in India: A Comparison Between Frequency Ratio and Analytic Hierarchy Process Methods

    Get PDF
    Forest fire is one of the most common natural hazards occurring in the Western Ghats region of Kerala and is one of the reasons for forest degradation. This natural disaster causes considerable damage to the biodiversity of this region during the dry fire season. The area selected for the present study, Eravikulam National Park, which is predominantly of grassland vegetation, is also prone to forest fires. This study aims to delineate the forest fire risk zones in Eravikulam National Park using remote sensing (RS) data and geographic information system (GIS) techniques. In the present study, methods such as Analytic Hierarchy Process (AHP) and Frequency Ratio (FR) were used to derive the weights, and the results were compared. We have used seven factors, i.e. land cover types, normalized difference vegetation index, normalized difference water index, slope angle, slope aspect, distance from the settlement, and distance from the road to prepare the fire risk zone map. The area of the prepared risk zone maps is divided into three zones, namely low, moderate, and high. From the study, it was found that the fire occurring in this area is due to natural as well as anthropogenic factors. The prepared forest fire risk zone maps are validated using the fire incidence data for the period from January 2003 to June 2019 collected from the records of the Forest Survey of India. The investigation revealed that 72% and 24% of the fire incidences occurred in the high risk zone of the maps prepared using the AHP and FR methods, respectively, which ascertained the superiority of the AHP method over the FR method for forest fire risk zone mapping. The receiver operating characteristic (ROC) curve analysis gives an area under the ROC curve (AUC) value of 0.767 and 0.567 for the AHP and FR methods, respectively. The risk zone maps will be useful for staff of the forest department, planners, and officials of the disaster management department to take effective preventive and mitigation measures
    corecore